Improved Techniques for Factoring Univariate Polynomials

نویسندگان

  • George E. Collins
  • Mark J. Encarnación
چکیده

The paper describes improved techniques for factoring univariate polynomials over the integers. The authors modify the usual linear method for lifting modular polynomial factorizations so that efficient early factor detection can be performed. The new lifting method is universally faster than the classical quadratic method, and is faster than a linear method due to Wang, provided we lift sufficiently high. Early factor detection is made more effective by also testing combinations of modular factors, rather than just single modular factors. Various heuristics are presented that reduce the cost of the factor testing or that increase the chance of successful testing. Both theoretical and empirical computing times are presented. c © 1996 Academic Press Limited

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministically Factoring Sparse Polynomials into Multilinear Factors and Sums of Univariate Polynomials

We present the first efficient deterministic algorithm for factoring sparse polynomials that split into multilinear factors and sums of univariate polynomials. Our result makes partial progress towards the resolution of the classical question posed by von zur Gathen and Kaltofen in [6] to devise an efficient deterministic algorithm for factoring (general) sparse polynomials. We achieve our goal...

متن کامل

The complexity of factoring univariate polynomials over the rationals

This tutorial will explain the algorithm behind the currently fastest implementations for univariate factorization over the rationals. The complexity will be analyzed; it turns out that modifications were needed in order to prove a polynomial time complexity while preserving the best practical performance. The complexity analysis leads to two results: (1) it shows that the practical performance...

متن کامل

Univariate Polynomial Factorization Over Finite Fields

This paper shows that a recently proposed approach of D. Q. Wan to bivariate factorization over finite fields, the univariate factoring algorithm of V. Shoup, and the new bound of this paper for the average number of irreducible divisors of polynomials of a given degree over a finite field can be used to design a bivariate factoring algorithm that is polynomial for "almost all" bivariate polyno...

متن کامل

Factoring Multivariate Polynomials over Algebraic Number Fields

The algorithm for factoring polynomials over the integers by Wang and Rothschild is generalized to an algorithm for the irreducible factorization of multivariate polynomials over any given algebraic number field. The extended method makes use of recent ideas in factoring univariate polynomials over large finite fields due to Berlekamp and Zassenhaus. The procedure described has been implemented...

متن کامل

Factoring Multivariate Polynomials over Algebraic Number Fields

The algorithm for factoring polynomials over the integers by Wang and Rothschild is generalized to an algorithm for the irreducible factorization of multivariate polynomials over any given algebraic number field. The extended method makes use of recent ideas in factoring univariate polynomials over large finite fields due to Berlekamp and Zassenhaus. The procedure described has been implemented...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1996